Source code for openmdao.solvers.newton

""" Non-linear solver that implements a Newton's method."""

from math import isnan

import numpy as np

from openmdao.core.system import AnalysisError
from openmdao.solvers.solver_base import NonLinearSolver
from openmdao.util.record_util import update_local_meta, create_local_meta


[docs]class Newton(NonLinearSolver): """A python Newton solver that solves a linear system to determine the next direction to step. Also uses `Backtracking` as the default line search algorithm, but you can choose a different one by specifying `self.line_search`. A linear solver can also be specified by assigning it to `self.ln_solver` to use a different solver than the one in the parent system. Options ------- options['alpha'] : float(1.0) Initial over-relaxation factor. options['atol'] : float(1e-12) Absolute convergence tolerance. options['err_on_maxiter'] : bool(False) If True, raise an AnalysisError if not converged at maxiter. options['iprint'] : int(0) Set to 0 to disable printing, set to 1 to print the residual to stdout each iteration, set to 2 to print subiteration residuals as well. options['maxiter'] : int(20) Maximum number of iterations. options['rtol'] : float(1e-10) Relative convergence tolerance. options['solve_subsystems'] : bool(True) Set to True to solve subsystems. You may need this for solvers nested under Newton. """ def __init__(self): super(Newton, self).__init__() # What we support self.supports['uses_derivatives'] = True opt = self.options opt.add_option('atol', 1e-12, lower=0.0, desc='Absolute convergence tolerance.') opt.add_option('rtol', 1e-10, lower=0.0, desc='Relative convergence tolerance.') opt.add_option('maxiter', 20, lower=0, desc='Maximum number of iterations.') opt.add_option('alpha', 1.0, desc='Initial over-relaxation factor.') opt.add_option('solve_subsystems', True, desc='Set to True to solve subsystems. You may need this for solvers nested under Newton.') self.print_name = 'NEWTON' # User can optionally specify a line search. self.line_search = None # User can specify a different linear solver for Newton. Default is # to use the parent's solver. self.ln_solver = None
[docs] def setup(self, sub): """ Initialize sub solvers. Args ---- sub: `System` System that owns this solver. """ if self.line_search: self.line_search.setup(sub) if self.ln_solver: self.ln_solver.setup(sub)
[docs] def solve(self, params, unknowns, resids, system, metadata=None): """ Solves the system using a Netwon's Method. Args ---- params : `VecWrapper` `VecWrapper` containing parameters. (p) unknowns : `VecWrapper` `VecWrapper` containing outputs and states. (u) resids : `VecWrapper` `VecWrapper` containing residuals. (r) system : `System` Parent `System` object. metadata : dict, optional Dictionary containing execution metadata (e.g. iteration coordinate). """ atol = self.options['atol'] rtol = self.options['rtol'] maxiter = self.options['maxiter'] alpha_scalar = self.options['alpha'] ls = self.line_search # Metadata setup self.iter_count = 0 local_meta = create_local_meta(metadata, system.pathname) if self.ln_solver: self.ln_solver.local_meta = local_meta else: system.ln_solver.local_meta = local_meta update_local_meta(local_meta, (self.iter_count, 0)) # Perform an initial run to propagate srcs to targets. system.children_solve_nonlinear(local_meta) system.apply_nonlinear(params, unknowns, resids) if ls: base_u = np.zeros(unknowns.vec.shape) f_norm = resids.norm() f_norm0 = f_norm if self.options['iprint'] > 0: self.print_norm(self.print_name, system.pathname, 0, f_norm, f_norm0) arg = system.drmat[None] result = system.dumat[None] while self.iter_count < maxiter and f_norm > atol and \ f_norm/f_norm0 > rtol: # Linearize Model with partial derivatives system._sys_linearize(params, unknowns, resids, total_derivs=False) # Calculate direction to take step arg.vec[:] = -resids.vec with system._dircontext: system.solve_linear(system.dumat, system.drmat, [None], mode='fwd', solver=self.ln_solver) self.iter_count += 1 # Allow different alphas for each value so we can keep moving when we # hit a bound. alpha = alpha_scalar*np.ones(len(unknowns.vec)) # If our step will violate any upper or lower bounds, then reduce # alpha in just that direction so that we only step to that # boundary. alpha = unknowns.distance_along_vector_to_limit(alpha, result) # Cache the current norm if ls: base_u[:] = unknowns.vec base_norm = f_norm # Apply step that doesn't violate bounds unknowns.vec += alpha*result.vec # Metadata update update_local_meta(local_meta, (self.iter_count, 0)) # Just evaluate (and optionally solve) the model with the new # points if self.options['solve_subsystems']: system.children_solve_nonlinear(local_meta) system.apply_nonlinear(params, unknowns, resids, local_meta) self.recorders.record_iteration(system, local_meta) f_norm = resids.norm() if self.options['iprint'] > 0: self.print_norm(self.print_name, system.pathname, self.iter_count, f_norm, f_norm0) # Line Search to determine how far to step in the Newton direction if ls: f_norm = ls.solve(params, unknowns, resids, system, self, alpha_scalar, alpha, base_u, base_norm, f_norm, f_norm0, metadata) # Need to make sure the whole workflow is executed at the final # point, not just evaluated. #self.iter_count += 1 #update_local_meta(local_meta, (self.iter_count, 0)) #system.children_solve_nonlinear(local_meta) if self.iter_count >= maxiter or isnan(f_norm): msg = 'FAILED to converge after %d iterations' % self.iter_count fail = True else: fail = False if self.options['iprint'] > 0: if not fail: msg = 'converged' self.print_norm(self.print_name, system.pathname, self.iter_count, f_norm, f_norm0, msg=msg) if fail and self.options['err_on_maxiter']: raise AnalysisError("Solve in '%s': Newton %s" % (system.pathname, msg))
[docs] def print_all_convergence(self): """ Turns on iprint for this solver and all subsolvers. Override if your solver has subsolvers.""" self.options['iprint'] = 1 if self.line_search: self.line_search.options['iprint'] = 1